
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
Autonomy, Artificial Intelligence & Robotics (AAIR) Technical Session

August 11-13, 2020 – Novi, Michigan

ENABLING ARTIFICIAL INTELLIGENCE STUDIES IN OFF-ROAD
MOBILITY THROUGH PHYSICS-BASED SIMULATION OF

MULTI-AGENT SCENARIOS

D. Negrut, R. Serban, A. Elmquist, J. Taves, A. Young
University of Wisconsin – Madison

Madison, WI

A. Tasora, S. Benatti
Dipartimento di Ingegneria ed Architettura

University of Parma, Italy

ABSTRACT

We describe a simulation environment that enables the design and testing of control policies for off-
road mobility of autonomous agents. The environment is demonstrated in conjunction with the design
and assessment of a reinforcement learning policy that uses sensor fusion and inter-agent communi-
cation to enable the movement of mixed convoys of conventional and autonomous vehicles. Policies
learned on rigid terrain are shown to transfer to hard (silt-like) and soft (snow-like) deformable ter-
rains. The enabling simulation environment, which is Chrono-centric, is used as follows: the training
occurs in the GymChrono learning environment using PyChrono, the Python interface to Chrono. The
GymChrono-generated policy is subsequently deployed for testing in SynChrono, a scalable, cluster-
deployable multi-agent testing infrastructure that uses MPI. The Chrono::Sensor module simulates
sensing channels used in the learning and inference processes. The software stack described is open
source. Relevant movies: [1].

1 INTRODUCTION

Computer simulation has been extensively used in
the design and analysis of various automation as-
pects tied to on-road mobility, see, for instance
[2]. A similar statement cannot be made for off-
road mobility owing to a smaller market and a
set of stiff challenges brought along by the task
at hand. However, a predictive simulation plat-
form for off-road mobility analysis of autonomous
agents (AAs) is very desirable since it can accel-
erate the engineering design cycle, reduce costs,

perform more thorough testing, and produce more
performant and safer designs. Simulation is not
a silver bullet as it has its limitations, first of all
the issue of simulation-to-reality transfer [3], which
pertains to the failure of control policies derived in
simulation to work well in the real world. Fur-
thermore, models are difficult to set up and cal-
ibrate, the validation process can be tedious and
time consuming, and open source simulation tools
that are both predictive and expeditious are not
readily available. This contribution addresses the
third point. It describes a simulation environment

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. OPSEC#864



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

whose stated purpose is to allow the practitioner
to gain insights into the operation of AAs (robots
and autonomous wheeled or tracked vehicles) in
off-road conditions with an eye towards: improv-
ing mechanical designs of AAs; and, producing and
testing control policies that govern the operations
of the AAs. These are topical goals for the Army,
see, for instance, [4, 5, 6, 7], or, for a historical
perspective on early contributions, [8].

There are several ongoing efforts that seek to
address the AA simulation issue. In robotics,
Gazebo [9, 10] is a widely used 3D multi-robot
simulator with dynamics. It is not a simulation en-
gine per se, but a platform that exposes several en-
gines: ODE [11], Bullet [12], DART [13], and Sim-
body [14]. Unlike Gazebo, which is open source,
CoppeliaSim (formerly V-REP) [15] is a commer-
cial multi-robot simulation solution that also ex-
poses a set of simulation engines: MuJoCo [16],
Vortex Dynamics [17], Bullet, and Newton Dy-
namics [18]. ROAMS [19] and ANVEL [20] are
two other simulation engines for off-road AAs. The
former is used for mission planning by NASA and
draws on an in-house dynamics engine [21]; the lat-
ter relies on the ODE simulation engine and has
been used in the past for off-road military applica-
tions [22] in combination with a sensor simulation
package [23]. MAVS is an off-road AA simulation
environment that is currently under active devel-
opment [24]. It provides an in-house developed,
sophisticated sensor simulation module [25, 26],
has a ROS bridge, and uses Chrono as its dynam-
ics engine. USARSim is an AA simulation plat-
form, not under active development, that draws
on a game engine (Unreal Engine [27]), a choice
with pluses (scalability, ability to create complex
worlds) and minuses (the simulation engine is de-
signed for plausibility rather than accuracy). For
autonomous vehicle (AV) simulation, Carla [2] and
AirSim [28] are two often used open-source simu-
lators, the former for on-road AV driving scenarios
simulation, the latter originally designed for drones

but now including support for on-road traffic of
AVs as well. Carla and AirSim rely on Unreal
Engine but several other engines are used for AA
simulation, e.g. Unity [29] and TORCS [30]. For a
survey of other solutions for on-road mobility the
reader is referred to [31, 32].

The AA off-road mobility simulation platform
discussed here is Chrono-centric [33, 34]. In its
purpose, it is similar to the ANVEL-VANE en-
vironment as it seeks to simulate robots and
wheeled/tracked vehicles operating in off-road con-
ditions. Compared to the ANVEL-VANE so-
lution, the Chrono environment is different in
several respects: it is open source and avail-
able for unfettered use under a BSD3 license;
it uses its own multi-physics engine; it is scal-
able and deployable on supercomputers, clusters,
or multi-core architectures owing to its reliance
on the MPI message passing standard for paral-
lel computing [35]; and is under active develop-
ment. Chrono is an ecosystem of modules and
toolkits. It has support for rigid and flexible
body dynamics (Chrono::Engine), fluid-solid in-
teraction (Chrono::FSI), and granular dynamics
(Chrono::Parallel and Chrono::Granular) applica-
tions. It has Python bindings, support for sensor
simulation in Chrono::Sensor, an API for ROS [36]
bridging, as well as facilities for: rapid vehicle
modeling via parameterized templates [37]; con-
trol policy design with GymChrono; and scalable
control policy testing with SynChrono. Chrono re-
lies on GPU computing for fluid-solid interaction
and select granular dynamics simulations, multi-
core for most of the other modules, and MPI-
enabled parallel computing for co-simulation when
handling large terramechanics applications or col-
lections of AAs. Real-time simulation is not one of
Chrono’s priorities. Although for vehicle-on-rigid-
terrain simulation it provides faster than real-time
performance, there are numerous applications that
lead to long run times in Chrono, e.g., deformable
terrain mobility, nonlinear flexible body dynamics,

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 2 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

fording scenarios, etc.

This contribution highlights the Chrono com-
ponents that support the design and testing of
control policies through simulation: PyChrono,
GymChrono, Chrono::Sensor, and SynChrono. To
show these components at work, a Reinforcement
Learning (RL) approach is used herein to produce
a control policy. There is nothing special about
the RL approach; other techniques to design con-
trol policies could be used equally well, a point
touched upon in more detail in Section §2. Sec-
tion §3 describes the Chrono infrastructure that
facilitates artificial intelligence studies in off-road,
multi-agent mobility scenarios. Section §4 covers
simulation experiments that highlight two aspects:
the scalability of the SynChrono testing environ-
ment, and the process of designing the RL control
policy along with an evaluation of the policy’s ro-
bustness. Concluding remarks and directions of
future work round off the contribution.

2 DERIVING CONTROL POLICIES
THROUGH SIMULATION

Derived using an accurate simulation framework,
control algorithms have been shown to bridge the
sim-to-reality gap successfully [38, 39]. The use
of vehicles with Level 1 and Level 2 autonomy has
grown considerably [40, 41] and the automotive in-
dustry is making major strides in the transition to
Levels 3 and 4 autonomy [42, 43]. The use of simu-
lation for on-road AVs is an area of intense research
and development as this technology is seen as an
important catalyst of the aforementioned transi-
tion. One active area of research is focused on
sampling-based methods. These approaches gen-
erate many candidate trajectories a vehicle can
follow, selecting and executing the controls asso-
ciated with the best candidate [44, 45]. Graph
search methods are commonly associated with each
trajectory. The approach is real-time challenged,
since achieving robust results requires a high num-

ber of samples to be analyzed [46]. Algorithms
such as Dijkstra’s, A-Star (A*), or the Rapidly-
exploring Random Tree-Star (RRT*), sample the
state space either deterministically or stochasti-
cally [45]. Depending on the complexity of the
traffic scenario, these algorithms can prove compu-
tationally costly and provide sub-optimal results.

Model Predictive Control (MPC) is another
common AV control approach [47]. Using a dy-
namic model of a vehicle, the MPC algorithm
computes trajectories over the state space and
determines an optimal trajectory using gradient-
descending optimization techniques [46, 48]. A
limited time horizon is employed to reduce un-
needed computation for times too far out into the
future. In comparison to sampling algorithms, the
MPC approaches show improved performance that
is tied to the use of the gradient fields in the opti-
mization problem that comes into play [47].

The accuracy of the simulation platform plays
a critical role both for MPC as well as sampling-
based controllers. To adequately validate and sub-
sequently verify a controller such as MPC, the
simulation must be of high enough definition to
carry over successfully to reality [49]. When us-
ing the more pedestrian PID controller solutions,
for which gains must be carefully selected, an in-
accurate simulation platform could yield a poor
design that leads to undesired consequences when
deployed on a real vehicle.

The design of a robust controller that per-
forms adequately in complex environments using
the aforementioned strategies has proven difficult
when aiming for a generalized policy [50]. An
emerging approach that has gained momentum in
recent years is Machine Learning (ML) based [51].
ML has shown promise in producing efficient and
robust models that generalize well in a variety of
situations. The three pillars of ML include su-
pervised learning, unsupervised learning, and re-
inforcement learning. In the AA problem, deep
reinforcement learning (DRL) has been very suc-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 3 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

cessful, as it displays the ability to learn and re-
spond in complex scenarios without the need for
preprocessed or labeled data [39].

Since its introduction [52], DRL has proven suc-
cessful in robotics applications [53, 54]. At its core,
DRL is an iterative learning process in which an
agent interacts with an environment ; at each iter-
ation the agent collects an observation (or state),
then performs an action based on the previous ob-
servation and gets a reward which is a measure of
its performance. The goal of RL is to find a policy
that maximizes the sum of the collected reward.

RL allows for complex control policies viable
in unstructured and stochastic environments; it is
model-free in that it does not require a model that
predicts environment transients; and can learn
from scratch. RL’s major flaw is its need for a
massive amount of training data to infer a robust
policy. The role of simulation is to produce this
collection of samples. Policy Gradient Algorithms
are a subset of RL algorithms whose goal is to di-
rectly learn an optimal stochastic policy πθ(a|s),
where s, a, and θ are the state, action, and a set of
learnable parameters, respectively. If π is a Neural
Network (NN), θ are the weights and biases of the
NN, the state is the NN input, and the action is its
output. Proximal Policy Optimization (PPO) [55]
is one of the most widely used algorithms for con-
tinuous state and action environments and will be
the algorithm of choice in this contribution. PPO
is a policy gradient algorithm whose goal is to op-
timize a stochastic policy. It is also an actor-critic
method since another NN is trained and used to
estimate the Value Function [56] employed to es-
timate the Advantage Function [57]. The Advan-
tage Function is used in the objective function to
be maximized.

3 SIMULATION INFRASTRUCTURE

The purpose of the simulation environment de-
scribed is twofold. First, it is used to produce

the data needed to design a control policy. Sec-
ond, it is used for testing purposes. To this end,
it exposes the control policy produced in a model-
based or model-free approach to a battery of tests
to gauge its correctness and robustness. This
section outlines the components of this Chrono-
centric simulation environment. The emphasis is
placed on four components: Chrono::Sensor, Py-
Chrono, GymChrono and SynChrono, that anchor
the AA design and testing process and have not
been discussed elsewhere in detail. More estab-
lished Chrono components or functionality will be
touched upon in passing; more details are provided
in [34, 37, 58].

Chrono. Under active development for over two
decades, Chrono [34] is a multi-physics simulation
engine distributed as open-source under a permis-
sive BSD license. Its core module, Chrono::Engine,
provides support for rigid multibody dynamics,
nonlinear finite element analysis, and frictional
contact dynamics. Chrono is modular, with op-
tional modules providing support for additional
classes of physics simulation (e.g., fluid-solid inter-
action or large-scale granular dynamics), for mod-
eling and simulation of specialized mechanical sys-
tems (e.g., ground vehicles), for interfaces to exter-
nal solvers (e.g., sparse direct linear solvers), or for
dedicated parallel algorithms targeting different
computing architectures (multi-core, distributed,
and GPU) for large-scale simulations.

Written almost entirely in C++, Chrono is mid-
dleware and therefore supports customized solu-
tions that involve user code and potentially third-
party software. The software is portable and can
be built on different platforms, under different
operating systems, and using various compilers.
Chrono is actively developed, has a continuous
integration process, an active user forum, and is
managed through GitHub [59]. It’s latest release
is 5.0.1, available as of March 2020. Chrono is used
by academic, industrial, and government research

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 4 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

and development groups and projects.

Chrono::Vehicle. Chrono::Vehicle [37] is a spe-
cialized Chrono module that makes available a col-
lection of templates (fully parameterized models)
for various topologies of both wheeled and tracked
vehicle subsystems. It provides facilities for mod-
eling rigid, deformable, and granular terrain; sup-
port for closed-loop and interactive driver models;
and run-time and off-line visualization of simula-
tion results. Chrono::Vehicle leverages and works
in tandem with other Chrono modules for run-time
visualization or finite element, granular dynamics,
and parallel computing support.

Chrono::Vehicle provides vehicle subsystem tem-
plates for tires, suspensions, steering mechanisms,
drivelines, sprockets, track shoes, etc.; templates
for external systems such as powertrains, drivers,
and terrain models; and additional utility classes
and functions for vehicle visualization, monitoring,
and collection of simulation results. As a middle-
ware library, Chrono::Vehicle requires the user to
provide C++ classes for a concrete instantiation
of a particular template. An optional Chrono li-
brary provides complete sets of template instanti-
ations for several concrete ground vehicles, both
wheeled and tracked, which can serve as exam-
ples for developing more customized vehicle mod-
els. An alternative mechanism for defining con-
crete instantiation of vehicle system and subsys-
tem templates is based on input specification files
in the JSON format [60]. For additional flexibil-
ity and to allow integration of third-party software,
Chrono::Vehicle is designed to permit either mono-
lithic simulations or co-simulation where the vehi-
cle, powertrain, tires, driver, and terrain/soil in-
teraction can be simulated independently.

Chrono::Vehicle provides several classes of ter-
rain and soil models, of different fidelity and com-
putational complexity, ranging from rigid, to semi-
empirical Bekker-Wong type models, to complex
physics-based models based on either a granular or

Figure 1: Chrono::Vehicle HMMWV with flexible

tires navigating granular terrain demonstrating vehicle

dynamics, flexible body dynamics, and parallel com-

puting support in Chrono [61].

finite-element based soil representation. For simple
terramechanics simulations, Chrono::Vehicle im-
plements a customized Soil Contact Model (SCM),
based on Bekker theory, with extensions to al-
low non-structured triangular grids, adaptive mesh
refinement, and incorporation of bulldozing ef-
fects [58]. Second, Chrono provides an FEA con-
tinuum soil model based on multiplicative plas-
ticity theory with Drucker-Prager failure criterion
and specialized brick elements. Finally, leveraging
Chrono support for large-scale granular dynamics
and for multi-core, GPU, and distributed paral-
lel computing, off-road vehicle simulations can be
conducted using fully-resolved, granular dynamics-
based complex terramechanics, using a Discrete El-
ement Method approach, see Fig. 1 [61, 62].

Chrono::Sensor. Chrono::Sensor provides sen-
sor simulation support for software-in-the-loop
testing. Cameras, lidar, GPS, and IMU sensors
can be placed within a Chrono simulation to gener-
ate synthetic data based on user-defined sensor pa-
rameters and attributes of the virtual world host-
ing the AA simulation experiment. The goal of the
module is to allow realistic data generation based
on sensor characteristics such as noise, distortion,
and lag. Sensors can be attached to objects within
the simulation and configured to match corre-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 5 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

sponding real sensors. For modeling convenience,
sensors can be defined through a JSON file [60].
Additionally, custom sensors and post-processing
filtering can be implemented, leveraging the exist-
ing render framework or physics interface.

For interoceptive sensing (GPS and IMU), the
module utilizes the internally computed physi-
cal quantities from the Chrono system and can
augment this ground truth with drift, Gaussian
noise, lag, and filtering characteristics from fi-
nite collection time. For exteroceptive sensors
that provide information about scene characteris-
tics (camera and lidar), Chrono::Sensor leverages
hardware accelerated ray tracing through the Op-
tiX library [63] and implements physically based
rendering techniques. The ray tracing approach
allows for the physical reconstruction of the light-
based data acquisition process and thus controls
the attributes of the synthetically generated sensor
data. For camera, lens models and post-processing
noise augmentation are supported, with an inter-
face to extend or implement custom models. For
lidar, the framework expands on work from [25]
to provide a beam divergence model that supports
multiple modes of lidar return and reduced inten-
sity during partial beam reflectance. The cam-
era and lidar can also be parameterized by update
rate, time over which to collect data, and lag.

Chrono::Sensor is currently in development with
planned expansion of sensor support and addi-
tional distortion model implementations. All sen-
sors and capabilities are written in C++, but can
also be accessed from Python through the Py-
Chrono interface. The entire module can be run
headless without the requirement of a render con-
text, allowing for ease of deployment in machine
learning applications on remote servers (in the
cloud).

PyChrono. While the main Chrono API is ex-
pressed in C++, in recent years a concerted ef-
fort was dedicated to providing automatically-

generated Python wrappers for much of the
Chrono functionality. The purpose was twofold: to
provide a lower-entry point to Chrono simulations
for users less familiar with C++; and, provide a
bridge to various machine learning platforms, e.g.
TensorFlow [64], PyTorch [65], Theano [66], and
CAFFE [67].

The Python wrapping relies on using automated
technology provided by SWIG [68], which gener-
ates the interface between Python user-code and
the underlying Chrono C++ libraries. Presently,
a large set of Chrono functionality is exposed to
Python users, including the core multibody and
FEA module, the interface to CAD systems (like
SolidWorks), run-time visualization with Irrlicht,
etc. In particular, full support is available for both
modeling, simulation, and visualization of wheeled
ground vehicles and use of the Chrono::Vehicle ex-
isting wheeled vehicle models, as well as using the
sensor models provided by Chrono::Sensor. Py-
Chrono for Python 3 can be built from sources on
any of the supported platforms (Linux, Windows,
MacOS). Alternatively, pre-built conda PyChrono
packages are available on the project’s Anaconda
page [69] (note that Chrono::Sensor is not available
yet via the conda PyChrono packages).

GymChrono. GymChrono is an extension of
OpenAI Gym [70]. It exposes a set of envi-
ronments providing continuous control tasks for
physics and sensor simulation run by the Chrono
backend. These environments inherit from Ope-
nAI Gym classes. As such, they can be used out
of the box with any algorithm or DRL framework
made for gym environments. They can also draw
on gym’s environment parallelization for learning
acceleration.

SynChrono. SynChrono is a software compo-
nent that uses Chrono to implement a distributed-
memory execution model when simulating sce-
narios that include multiple AAs. By leverag-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 6 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ing the Message Passing Interface (MPI) stan-
dard [71], SynChrono can manage multiple in-
stances of Chrono running together one mobility
analysis on a supercomputer, cluster, or multi-core
setup thus supporting the scalable and distributed
simulation of multiple agents (robots, tracked ve-
hicles, wheeled vehicles, etc.) The paradigm em-
braced is that of running the dynamics of one AA
as one MPI rank, with the ranks/AAs communi-
cating through MPI messages to maintain space
and time coherent state for all agents participat-
ing in the study. As an example, if there are
two agents, SynChrono makes it possible to syn-
chronously run the two agents on two different
compute nodes in a supercomputer. By the same
token, if there are 50 agents and 50 compute nodes
in a cluster, SynChrono provides the infrastructure
to keep the 50 agents operating in a coherent (time-
wise and spacewise) virtual world. Although each
agent represents a Chrono simulation, SynChrono
makes it possible for ruts generated by agent 27
to be picked up on a camera sensor on agent 31
if the camera points to agent 27. The time co-
herence aspect prevents some agents from racing
into the future while other agents lag behind in
the past. The global synchronization mechanism
in SynChrono ensures that all 50 agents march for-
ward in simulation time in a coherent fashion so
that mutual interaction (a vehicle crossing the ruts
of a different one, a vehicle sensing another vehicle,
etc.) happens as in real life.

The structure of SynChrono’s MPI framework
is shown in Fig. 2. SynChrono manages multi-
ple AAs as multiple processes via as many MPI
ranks. Each AA runs in its own SynChrono pro-
cess (an MPI rank) and interfaces with its ded-
icated control stack for software-in-the-loop con-
trol. The control stack is fed synthetic data gen-
erated by Chrono::Sensor and acts upon the en-
vironment through Chrono::Vehicle control inputs
(throttle, steering, braking). The control algo-
rithm for each agent is also configurable and can

Figure 2: Schematic of the SynChrono framework.

Dynamics simulations are done in separate Chrono

systems and the outcome of the dynamics simulation

is synchronized between ranks using MPI.

vary from complex algorithms that fuse sensor
feeds/data streams, to controls based on empiri-
cal models, and on to pre-recorded driver inputs
from a human or human-driven control in scenar-
ios that are simple enough to allow real-time sim-
ulation. SynChrono supports human-in-the-loop
experiments as well.

Each SynChrono process is responsible for the
dynamics of a single agent. At a slow frequency
(relative to the simulation time-step), all Syn-
Chrono processes communicate via the SynChrono
daemon to exchange state information. State in-
formation is intended to be brief, sufficient to en-
able a SynChrono process to reconstruct a “ghost”
version of outside agents in its own world for vi-
sualization and sensing purposes. In an example
where each agent is a vehicle, the state informa-
tion consists of the vehicle location and orienta-
tion along with pose information for each wheel.
This information is packaged via the FlatBuffers
serialization library [72].

One limitation of the implementation is that
currently two agents running as two SynChrono
processes cannot crash with each other or partic-
ipate in an operation that couples their dynam-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 7 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

ics, e.g. lifting together a heavy object. Such a
scenario should be run in Chrono, since the cou-
pling is too tight to be handled by SynChrono.
This will make the simulation longer to run since
more agents will have to be handled within one
Chrono process. However, if the agent coupling
happens via sensing or the virtual world, e.g., one
agent sensing another one, or one vehicle crossing
over and being jolted by the ruts left by a differ-
ent agent, then SynChrono can be relied on, thus
ensuring scalability. The goal of SynChrono is to
have virtually constant scaling up to a high thresh-
old where the data passing overhead becomes the
simulation bottleneck.

Interface to an external controller. For test-
ing of control algorithms that are intended to be
easily transferred to real-life vehicles or robots,
the simulation platform provides an external con-
trol interface that is exposed in SynChrono. An
agent in SynChrono can send messages (i.e. sensor
data packets) to the external autonomous controls
framework which can then send a message back
(i.e. control inputs). The control stack is indepen-
dent of the SynChrono platform (e.g. a bridge has
been developed for ROS [36]), and can be tested
with inputs replicating those from reality, such as
sensor and/or V2X communication data.

4 TECHNOLOGY DEMONSTRATION

All simulation scenarios considered in this sec-
tion use a Chrono::Vehicle HMMWV model.
Chrono::Vehicle was benchmarked as part of the
Next Generation-NRMM (NG-NRMM) exercise
[73]; Chrono::Vehicle-specific benchmark findings
are detailed in [74, 75]. Note that: the NG-NRMM
benchmarking effort involved Chrono::Vehicle but
no the particular model used in this study; and, all
results reported herein were obtained using a sim-
ulation time step of ∆t = 2 × 10−3 seconds, both
for rigid and deformable terrain. This time step

information is relevant when discussing real-time
performance and scalability aspects.

4.1 SynChrono scaling analysis

SynChrono uses N + 1 processes executing on a
cluster/supercomputer to simulate the dynamics
of N agents handled as N independent Chrono
simulations. Each Chrono simulation is a pro-
cess; the extra process is involved in maintaining
the time and space coherence for the virtual world
shared by the N AAs. The SynChrono daemon
executes as the extra process and it coordinates
via MPI the dynamics of the N agents. The nu-
merical experiments described here answer the fol-
lowing questions: (i) How does the time to com-
plete a simulation change as N increases? (ii) How
fast is SynChrono in mobility studies on rigid ter-
rain? (iii) How fast is it when an SCM deformable
terrain model is considered in the simulation sce-
nario? The Linux cluster used exposed 15 nodes.
Thus, one set of experiments was conducted with
up to N = 14 AAs, using rigid, SCM hard (silt-
like), and SCM soft (snow-like) terrain, with one
agent per compute node. However, the experiment
also included scenarios with up to 56 AAs. In this
case, four AAs ran on the same compute node. On
the upside, this allowed more AAs to participate
in the benchmark; on the downside, the simula-
tion times went up since the hardware allocation
per AA went down by a factor of four.

The handling of a virtual world that has SCM
terrain is challenging since each of the N vehicles
changes the terrain at the same time and these
changes must be space and time coherent. This is
facilitated and managed by the SynChrono dae-
mon. The key component of the SCM terrain
is the deformation of each vertex in the underly-
ing SCM mesh. All other terrain properties can
be computed based on the height of each vertex
alone [58]. At each simulation step, a SynChrono
rank that is associated with an agent moving on

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 8 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

SCM terrain collects a list of the deformed ver-
tices that the agent produced during the course of
that time step. Mesh deformation data may not be
sent at every simulation time-step, so this collec-
tion of mesh changes is in general persistent across
simulation time steps. Once an agent reaches a
SynChrono synchronization point, the cumulative
mesh deformations produced by one agent are sent
via the daemon to every other agent’s world. Each
agent then applies the deformations to their own
copy of the SCM mesh and resets their collection
of new mesh deformations. This means that two
agents should not come close enough that they de-
form the same vertices during the same synchro-
nization period, but this is just as restrictive as
SynChrono’s assumption that any two agents will
not interact by crashing. While Chrono’s SCM
implementation allows for meshes that auto-refine,
this is currently not supported in SynChrono due
to the significant increase in algorithmic complex-
ity for relatively little gain in performance. The
main concern for scalability is message size, since
for synchronizing SCM terrain there is about 15
times as much data to send for each agent relative
to the rigid terrain case.

The scenario discussed herein is that of many
vehicles crossing perpendicularly on a rectangular
patch of SCM terrain, see Fig. 3 and online movies
[1]. In this setup, one can easily scale up the num-
ber of vehicles and verify that the SCM terrain de-
formation is properly synchronized across multiple
ranks. The scaling metric used was the Real Time
Fraction (RTF), representing the amount of wall-
time required to finish a simulation divided by the
amount of time simulated. Running in real-time
corresponds to a factor of 1, while slower than real-
time corresponds to factors larger than one. The
tests were run on the Euler computing cluster at
the University of Wisconsin-Madison. Each node
has an eight core, Broadwell-generation Intel pro-
cessor; inter-node communication is facilitated via
a Gigabit Ethernet interconnect.

Figure 3: Environment used for SynChrono scaling
analysis for agents operating on SCM terrain. Two
lines of vehicles move across a rectangular patch,
crossing orthogonally and making ruts in the SCM
soil. Simulations were run on both soft and hard
SCM terrain, as well as on rigid terrain.

In a first sub-experiment, we assign each Syn-
Chrono process (which runs one vehicle) to dis-
tinct cluster nodes. The scaling analysis results
are presented in Fig. 4. The plot shows on the
y-axis the log10 of the RTF. Thus, any dot below
the horizontal x-axis is associated with an exper-
iment that ran faster than real time. Simulations
on the rigid terrain ran with an RTF of 0.75 and
simulations on either type of SCM terrain (hard or
soft) ran with an RTF of approximately 110. The
RTF value of 110 is independent of the of SCM
soil parameters (i.e. soft vs. hard), but is highly
dependent on the processor performance, MPI im-
plementation, compiler, and compilation optimiza-
tion. These results confirm weak scaling behavior:
no significant performance penalty is observed for
including additional agents in the simulation when
each SynChrono process is assigned to a different
compute node.

Using the same scenario as above, scaling anal-
yses were also conducted for a larger number of
agents on rigid terrain to ensure that the same
weak scaling continued to hold. To this end, two
other sub-experiments were conducted: two Syn-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 9 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 4: SynChrono scaling analysis for rigid,
SCM hard, and SCM soft terrains. Logarithmic
scale used.

Chrono processes were deployed per node; and,
four SynChrono processes were deployed per node.
Given the number of nodes made available on the
cluster (15), for two-per-node, SynChrono handled
28 AAs; for four-per-node, it managed a joint sim-
ulation of 56 AAs. Timing results are shown in
Fig. 5, which shows that 56 AAs run in slightly
more than 1.8× real time. Given a supercomputer
or larger cluster, SynChrono opens the possibility
of simulating swarms of AAs.

4.2 Learning to drive in a convoy

Chrono helps with two tasks: learning a control
policy, and testing a policy that was designed in
Chrono or brought from outside. In this exam-
ple, PyChrono and GymChrono are used to design
a policy. SynChrono is subsequently used to test
it. The RL-based learning is done on rigid ter-
rain using a nondescript texture. The goal is to
enable a vehicle to move as part of a convoy. To
test it, the policy is deployed on vehicles that are
part of a four-vehicle convoy driving on rigid or
SCM deformable terrain. Up to three of the con-

Figure 5: SynChrono scaling analysis on rigid ter-
rain for a large number of agents.

voy vehicles use this policy while driving in a pla-
toon. Thus, the possible scenarios are: three lead
vehicles and one following vehicle (3L+1F), two
lead and two followers (2L+2F), and one lead and
three followers (1L+3F). The lead vehicles are pro-
grammed to follow a path defined by way-points;
for all purposes, these can be considered human
driven. A follower vehicle is autonomous and uses
the learned policy to follow the vehicle in front of
it. In doing so, it should not crash in the vehi-
cle ahead of it, and avoid hitting obstacles in the
vicinity of the path. To this end, it relis on a cam-
era sensor, location acquired through GPS sensing,
and compass heading. Note that communication
allows a vehicle to find out the GPS location and
velocity of the vehicle in front. Given that four ve-
hicles are involved in this platooning experiment,
SynChrono is subsequently used to test the pol-
icy to reduce simulation times. Indeed, this vali-
dation could be run in Chrono::Engine but would
roughly require four times longer to complete it.
The salient points of this experiment are as fol-
lows: although vehicles are run in different Syn-
Chrono processes, there is time and space coher-
ence between them to the point where the vehicles

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 10 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

sense each other; the learning occurs using rigid
terrain with nondescript texture but the policy is
tested on deformable terrain that is white (snow-
like); this is an end-to-end policy that uses sensor
data fusion to control both the steering and accel-
eration/braking of the vehicle.

Designing a policy. The policy was obtained
through training using a custom implementation
of the PPO reinforcement learning algorithm lever-
aging PyTorch [65] as the Deep Learning frame-
work. The agent is a HMMWV vehicle modeled
in Chrono::Vehicle. The goal of the training pro-
cess is to develop a control policy that enables an
agent (in this case the HMMWV) to drive in a
convoy. For training, to increase the randomness
of the path and thus the robustness of the con-
trol, two different path types were used on a 90x90
meters area. The first is S-shaped, starting from
a corner and finishing in the opposite corner; the
second is C-shaped, starting and finishing on the
same side of the driving area. To further increase
the randomness, these paths can be flipped along
the y-axis (left-right) and rotated about the ver-
tical z-axis to obtain 16 different possible paths.
The starting point is picked randomly within the
first half of the path as shown in Fig. 6. Eight ob-
stacles placed near the path are randomly selected
from various rock, tree, and bush assets.

In order for the agent to accomplish its task,
the vehicle must be aware of its surroundings. To
that end, the HMMWV used two sensors simulated
in Chrono::Sensor: a GPS sensor, and an RGB
camera placed on the front bumper. The camera,
which updates at 30 Hz, has a resolution of 80 ×
45 pixels. This level of resolution suffices, since de-
tailed features that can be extracted from higher
resolution images are not needed by the control
policy. Furthermore, given that the dataset con-
tains one image per interaction, images of too high
resolution can quickly deplete the available GPU
memory due to the increased memory footprint of

75 50 25 0 25 50 75
X [m]

40

20

0

20

40

Y 
[m

]

Figure 6: The double S and C paths used during
training. Each one of these is randomly flipped and
rotated, resulting in 16 different possible paths.
The dashed lines represent the segment of the path
in which the simulation episode can start.

the NN update process. As such, large images that
are contained in observations are typically avoided.

As with any other RL environment, an observa-
tion and a reward is provided to the ML algorithm
at each timestep. Subsequently, the agent must
perform an action prescribed by the ML algorithm
in order to maximize the reward collected. The
action is a two element array: the first is a steer-
ing value; the second element is a combined throt-
tling and braking value. The choice of collapsing
throttle and brake control into the same action was
taken to avoid simultaneous braking and throttling
and because throttling and braking both directly
control the vehicle’s acceleration.

The agent is rewarded only when it successfully
stays behind the leader, meaning a reward is pro-
vided when the angle between the heading of the
leader and the follower is in the range [−π/4, π/4].
When this condition is met, the agent receives the
maximum reward if it keeps an optimal distance
(within a prescribed tolerance) from the lead vehi-
cle. In other words, the follower is rewarded when

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 11 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

it stays in a sector of an annulus centered at the
leader. When the vehicle is outside the desired
area, the reward decreases hyperbolically.

The learning draws on information from several
sensors, whose output is organized into two tuples.
The first element is a 80× 45× 3 RGB image. The
second is a vector of four values: the latitude and
longitude difference between the leader and the fol-
lower; the heading according to the compass; and
the speed at which the follower is approaching the
leader. This multi-sensor observation required the
NN architecture to incorporate an input composed
of a 3D and a 1D tensor. The image is processed in
a Convolutional Neural Network (CNN) as in [52].
Its output is then concatenated with the output of
the one Fully Connected (FC) hidden layer Deep
Neural Network (DNN) which takes the 1D Tensor
as input. Their concatenated output is then pro-
cessed by three FC hidden layers. The architecture
of the model is shown in Fig. 7.

RL-based training requires a very large number
of iterations. Three decisions helped speed up the
learning process: (i) the lead vehicles were not sim-
ulated, but only rendered at the correct location
and orientation (as this has no bearing for sens-
ing purposes); (ii) a reduced-order model of the
HMMWV vehicle was used in the first stage of
training, with the more computationally demand-
ing full vehicle model substituted during the train-
ing process (see Fig. 8) to further refine the NN
parameters; and (iii) the learning process was ac-
celerated using the OpenAI [70] Baselines tool for
environment parallelization, thus allowing several
simulations running simultaneously to speed up
the collection of the dataset samples.

Testing of learned policy. The AA control
policy derived in PyChrono and GymChrono was
tested in SynChrono for various convoy setups
while operating on three terrain types. The pla-
toons were 3L+1F, 2L+2F, and 1L+3F. The ter-
rains were rigid, SCM hard (silt-like), and SCM

soft (snow-like). This leads to a set of nine pla-
tooning scenarios. In the following discussion, the
leader and follower vehicles are numbered start-
ing from the head of the convoy; for example, the
order of the vehicles in a 1L+3F configuration is:
Leader, Follower 1, Follower 2, Follower 3.

For each platooning scenario, data recorded
from simulations included position, velocity, and
acceleration for each of the four vehicles. In addi-
tion, a high definition camera sensor was attached
to the last vehicle in the convoy in order to vi-
sualize the simulation. Still frames captured with
this camera are shown in Fig. 9 and full-length
videos of representative simulations are available
online [1]. Different ground textures and colors
were used to further differentiate between the three
terrain types (rigid, SCM-Hard, and SCM-Soft).

Table 1 shows top-down views of the convoy tra-
jectories for each platooning scenario, with solid
and dashed lines representing leader and follower
trajectories, respectively. As these images indi-
cate, different simulation configurations lead to dif-
ferent reactions of the follower vehicles. The train-
ing process described in §4.2 rewards a follower ve-
hicle for being within a certain angle and distance
of the leader; as a result, this allows for deviations
between the paths of follower and leader vehicles as
well as deviations in the speed at which leader and
follower vehicles negotiate a certain path segment.

In an effort to quantify the performance and
robustness of the derived platooning policy, we
present next results from a statistical analysis us-
ing ensemble convoy simulations. This study in-
cludes results from 128 independent simulations
for each one of the three terrain types mentioned
above. In order to allow relative comparisons
among different terrain types as well as between
follower positions in the convoy, all simulations
used the 1L+3F convoy configuration and each one
of the three sets of 128 simulation used the same
set of randomly-generated trajectories. The per-
formance metrics used in this analysis measure the

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 12 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 7: Sensor Fusion NN architecture.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 13 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Table 1: 2D Positions of each vehicle in each simulation configuration

3L+1F 2L+2F 1L+3F

R
ig

id
S
C

M
-H

ar
d

S
C

M
-S

of
t

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 14 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

0 500 1000 1500 2000
Updates

4000

6000

8000

10000

12000

14000

M
ea

n 
Su

m
 o

f R
ew

ar
d

Figure 8: Plot of the moving average of the sum
of collected rewards with respect to the policy up-
dates (updated every 1500 interactions). The ver-
tical dashed line represents the switch from the
reduced to the full HMMWV model.

path and speed deviation of a follower vehicle from
that of the convoy’s leader.

The 128 distinct scenarios were created in a 100
m × 100 m swath of flat terrain. A script gen-
erated 30 randomly placed circular obstacles with
sizes uniformly distributed between 5 m and 7 m.
The obstacle positions were drawn from a uniform
distribution with an additional restriction to al-
low overlap of no more than half their radius [76].
Finally, to increase the complexity of the result-
ing paths and reduce the likelihood of a straight
path, each configuration included four additional
fixed obstacles with radius of 8 m placed equidis-
tant along the diagonal from start to end.

A path was designed to get from start to fin-
ish while avoiding the obstacles. The path start
and end positions were fixed to the south-west and
north-east corners, respectively. A sample obsta-
cle field is shown on the left in Fig. 10. A Parti-
cle Swarm Optimization (PSO) algorithm [77] was
used to generate a shortest distance path connect-
ing the start and end locations, as shown in the
middle image of Fig. 10. The path generation was

constrained to produce trajectories that remained
in the domain and did not intersect obstacles.

Each of the 128 resulting paths shown in Fig. 11
was then used as the prescribed trajectory for the
path-follower PID-based lateral controller imple-
mented on the leader vehicle, in conjunction with
a PID-based longitudinal controller that prescribes
a target speed linearly increasing in time (corre-
sponding to a constant acceleration of 0.47 m/s2).

To produce paths that are feasible for simu-
lated HMMWV vehicles, the generation of the
corresponding environment setup in SynChrono
involved scaling obstacle meshes (rocks, trees,
bushes) such that their bounding sphere allows 2 m
of separation from the generated path centerline;
in other words, in each of the 128 environments,
the path prescribed for the leader vehicle ensures
a minimum width of 4 m. An overhead view of
the resulting SynChrono simulation environment
is shown on the right in Figure 10.

In order to perform a statistical analysis of the
performance of the platooning policy, we define a
set of six performance metrics that measure the
deviations of a follower vehicle from that of the
convoy leader and encode both lateral path devia-
tion and deviations in the vehicle speed at a given
location along the leader’s path. These metrics
are defined in such a way as to allow comparisons
between the performance of followers at different
positions in the convoy, as well as across the three
different terrain types considered here.

To eliminate differences due to the fact that ve-
hicles in a convoy are inherently staggered along
the path, the evaluation of the performance met-
rics is based on a common path segment. Figure 12
illustrates this process for the same trajectory used
as an example before. The sample results used in
this description are results of a simulation on rigid
terrain and consider the last vehicle in the convoy
(Follower 3). The start clip point is defined as the
point on the follower path closest to the leader’s
initial location. Similarly, the end clip point is de-

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 15 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

(a) (b) (c)

Figure 9: Still frames from attached third person camera: (a) rigid terrain; (b) SCM-Hard terrain; (c)
SCM-Soft terrain.

Figure 10: Sample obstacle field, PSO-based path planning, and the corresponding SynChrono environ-
ment setup.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 16 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 11: Ensemble of the 128 paths used in the
statistical analysis.

fined as the point on the leader’s path closest to
the follower’s final location. The resulting segment
on the leader’s path is then sampled at intervals of
equal arc-length and the closest point on the fol-
lower’s path to each such sampled point is identi-
fied. The distance between corresponding points
on the leader and follower paths are then used to
define a follower path deviation as function of dis-
tance traveled along the leader’s path (see Fig. 13).
This allows us to define the first two performance
metrics: mavg

p , the average follower path deviation,
and mmax

p , the maximum path deviation.

Next, we compare the vehicle speeds at corre-
sponding points on the follower and leader paths
as shown in the left plot of Fig. 14 from which
we derive the absolute and relative speed errors
(the latter being the speed difference scaled by
the leader’s speed at that location). The under-
lying assumption in these definitions is that a fol-
lower’s speed should match as closely as possible
the speed of the leader vehicle at the same location

Figure 12: Path deviation metrics calculation
(rigid terrain, Follower 3). The segment of the
leader path used in calculations for this particular
scenario (rigid terrain) was L = 158.2 m.

on the path (and not at the same point in time);
this is also why, when calculating the subsequent
speed deviation metrics, we discard the values cor-
responding to the first 10 m of travel (to allow the
vehicles to accelerate from rest to the desired con-
voy speed). With these we define two more pairs of
performance metrics: mavg

as , mmax
as , for the average

and maximum absolute speed deviation between
leader and follower, and mavg

rs , mmax
rs , for the aver-

age and maximum relative speed deviation of the
follower.

The six metrics defined above were evaluated
for each of the three follower vehicles in each sce-
nario in the three sets of 128 environments on
rigid, SCM-Hard, and SCM-Soft terrain, respec-
tively. The resulting statistics are presented as
box-and-whisker diagrams in Figs. 15, 16, and 17,
providing measures of the variability in the three
statistical populations without any assumption on
their underlying statistical distribution (which is

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 17 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 13: Deviation in path between Leader and
Follower 3. The lateral deviation metrics for this
particular scenario (rigid terrain) were mavg

p =
0.473 m, mmax

p = 2.484 m.

unknown, due to the manner in which the sample
trajectories were constructed). For each metric, on
each terrain type and for each of the three follower
vehicles in the 1L+3F configuration, these stan-
dard box plots provide information on their mean,
second and third quartiles, as well as minimum and
maximum values.

We assume that a perfect control policy for a
follower vehicle would result in a convoy in which
each follower vehicle runs exactly in the tracks
of the vehicle preceding it and achieves the exact
same speed at any given location. Given their def-
inition, this ideal case corresponds to zero values
for each of the six performance metrics.

The results of the statistical analysis presented
herein confirm the intuition that, in a 1L+3F con-
figuration, a less than perfect control policy will
lead to worse performance for the trailing follower
vehicles and better performance on harder surfaces
(especially taking into account that the training
was performed exclusively on rigid terrain). How-
ever, as the results for both path and speed de-
viation show, this is not the case when comparing

performance on SCM-Hard and SCM-Soft terrains,
with the latter showing consistent lower metrics
values (i.e., better performance in terms of main-
taining position in the convoy).

The explanation for this behavior is likely a com-
bination of several factors. First, even though the
target speed profile for the leader vehicle was set
identically for all three terrain types, the increased
terrain resistance in the SCM-Hard and SCM-Soft
cases resulted in the leader vehicle being unable
to continuously increase its speed to the specified
value; on both deformable terrain types, the vehi-
cles were unable to shift in the higher gears and
their speed limited to lower levels than on rigid
terrain (an effect more pronounced on SCM-Soft
terrain than on SCM-Hard). The ensuing over-
all lower convoy speed results in driving scenarios
where the control policy can adapt better. Sec-
ond, as seen in Fig. 14 and typical of all simu-
lations conducted as part of this analysis, current
deficiencies in the RL-based control policy result in
relatively jerky motion of the follower vehicles and
noisy speed profiles. These spurious accelerations
and decelerations are inhibited on the SCM-Soft
due to the increased motion resistance. Finally, the
largest deviations in a follower’s path (see Fig. 12)
always occur at tight turns where the leader vehicle
must go around an obstacle. In these situations,
the tendency of the control policy is to “cut cor-
ners” and thus direct the vehicle to increase steer-
ing input. However, these control steering inputs
are more difficult to follow in a deformable terrain
soft enough to result in deep ruts, thus resulting
in the follower vehicles more closely matching the
leader’s vehicle path around obstacles.

While the path planning procedure and the
path-following PID-based control policy imple-
mented for the leader vehicles ensures that a leader
vehicle always avoids obstacles, this is not the case
for the RL-based control policy implemented for
the follower vehicles, which occasionally are unable
to avoid an obstacle (in few situations, a follower

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 18 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 14: Deviation in speed between Leader and Follower 3. The vehicle speeds are evaluated at the
same location along the leader’s path. The speed deviation metrics for this particular scenario (rigid
terrain) where mavg

as = 0.505 m/s, mmax
as = 2.154 m/s and mavg

rs = 12.2%, mmax
rs = 69.2%.

vehicle, especially one in position 2 or 3, may end
up going on the opposite side of an obstacle). This
behavior has multiple compounding causes, includ-
ing the particular reward system used in the cur-
rent training as well as configurations where per-
ception of the leader vehicle is obstructed by an
obstacle or the leader vehicle is out of the camera
sensor’s field of view while negotiating a tighter
turn. The paths of all vehicles on each terrain
type are shown in Fig. 18. The path information
therein is used to gauge the robustness of the con-
trol policy in terms of obstacle avoidance. Fig-
ure 19 provides the cumulative statistics in terms
of number of obstacles hit, over all ensemble sim-
ulations, for all three terrain types and for each of
the three follower vehicles. These results show the
same relative performance trends observed before,
with the trailing follower on SCM-Hard terrain ex-
hibiting worst performance.

5 CONCLUSIONS. FUTURE WORK

This contribution discussed a Chrono-centric sim-
ulation platform designed to facilitate the design
and testing of control policies for AAs operating
in off-road conditions. The platform draws on a

physics-based simulation engine; has templates for
wheeled and tracked vehicles; enforces space and
time coherence; allows for human-in-the-loop sce-
narios; provides sensor simulation capabilities; has
a bridge to ROS; can simulate mobility on fully re-
solved, continuum, or SCM representations of the
terrain; is open source; and is cluster deployable
to support multi-AA mobility studies. This soft-
ware framework is used here to design an RL-based
control policy that allows AAs to follow in a con-
voy formation. The learning took place on rigid
terrain but was demonstrated to work when de-
ployed on AAs that operate on deformable SCM
soils. The virtual environments used in testing dif-
fered in textures and colors from the ones used in
the training, thus demonstrating robustness of the
inferred policy that relies on inputs from an RGB
camera sensor. Unsurprisingly, the fewer AAs in
the platoon, the tighter it managed to follow a pre-
scribed path. Looking ahead, we plan to speed
up the SCM implementation; augment the sensing
simulation support; improve scalability; and use
this simulation infrastructure to derive new con-
trol policies for off-road AA mobility.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 19 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

(a) (b)

Figure 15: Statistics of average and maximum follower path deviations.

(a) (b)

Figure 16: Statistics of average and maximum follower absolute speed deviations.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 20 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

(a) (b)

Figure 17: Statistics of average and maximum follower relative speed deviations.

(a) (b) (c)

Figure 18: Paths of every vehicle on each terrain type: (a) Rigid; (b) SCM-Hard; (c) SCM-Soft.

(a) (b) (c)

Figure 19: Number of obstacles hit by each vehicle on the three terrain types: (a) Rigid; (b) SCM-Hard;
(c) SCM-Soft.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 21 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Acknowledgments

The Euler supercomputer used in this work
contains hardware procured through the Army
Research Office DURIP instrumentation grant
W911NF1810476. Support for terramechanics re-
search is provided through US Army Research Of-
fice project W911NF1910431. Ongoing support
for core Chrono development is provided by Na-
tional Science Foundation project CISE1835674.
Ongoing support for SynChrono development is
provided by National Science Foundation project
CPS1739869. Support for the development of
Chrono::Vehicle was provided by U.S. Army GVSC
grant W56HZV-08-C-0236. Support for the de-
velopment of Chrono::Sensor and SynChrono has
been provided by the SAFER-SIM program, which
is funded through a grant from the U.S. Depart-
ment of Transportation’s University Transporta-
tion Centers Program (69A3551747131).

REFERENCES

[1] Project Chrono. GVSETS paper simu-
lations. https://uwmadison.box.com/s/

glbpqxpomgyiomt2ydctpe35avrh44vd, 2020.

[2] Alexey Dosovitskiy, German Ros, Felipe
Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving sim-
ulator. In Proceedings of the 1st Annual Con-
ference on Robot Learning, pages 1–16, 2017.

[3] Nick Jakobi, Phil Husbands, and Inman Har-
vey. Noise and the reality gap: The use of sim-
ulation in evolutionary robotics. In European
Conference on Artificial Life, pages 704–720.
Springer, 1995.

[4] Paramsothy Jayakumar, William Smith,
Brant A Ross, Rohit Jategaonkar, and Krys-
tian Konarzewski. Development of high fi-
delity mobility simulation of an autonomous

vehicle in an off-road scenario using integrated
sensor, controller, and multi-body dynamics.
Technical report, Army Tank Automotive Re-
search Development and Engineering Ceter,
Warren-MI, 2011.

[5] Paramsothy Jayakumar, Abhinandan Jain,
James Poplawski, Marco Quadrelli, Jonathan
Cameron, and Joseph Raymond. Ad-
vanced mobility testbed for dynamic semi-
autonomous unmanned ground vehicles.
Technical report, Army Tank Automotive
Research Development and Engineering
Ceter, Warren-MI, 2015.

[6] David J Gorsich, Paramsothy Jayakumar,
Michael P Cole, Cory M Crean, Abhinandan
Jain, and Tulga Ersal. Evaluating mobility vs.
latency in unmanned ground vehicles. Journal
of Terramechanics, 80:11–19, 2018.

[7] Michael Cole, Cesar Lucas, Kumar B Kulka-
rni, Daniel Carruth, Christopher Hudson, and
Paramsothy Jayakumar. Are M&S tools ready
for assessing off-road mobility of autonomous
vehicles? In Ground Vehicle Systems En-
gineering and Technology Symposium, pages
13–15, 2019.

[8] Philip Frederick, Mike Del Rose, David
Pirozzo, Robert Kania, Bernard Theisen, and
Stephanie Roth. Implementing robotic con-
trol algorithms in open source and govern-
ment virtual environments. In NDIA Ground
Vehicle Systems Engineering and Technology
Symposium, 2014.

[9] Open-Source-Robotics-Foundation. A 3D
multi-robot Simulator with Dynamics. http:
//gazebosim.org/. Accessed: 2015-03-09.

[10] Nathan P Koenig and Andrew Howard. De-
sign and use paradigms for Gazebo, an open-
source multi-robot simulator. In IROS, vol-
ume 4, pages 2149–2154. Citeseer, 2004.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 22 of 27

https://uwmadison.box.com/s/glbpqxpomgyiomt2ydctpe35avrh44vd
https://uwmadison.box.com/s/glbpqxpomgyiomt2ydctpe35avrh44vd
http://gazebosim.org/
http://gazebosim.org/


Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

[11] Russell L. Smith. Open Dynamics Engine.
Available online at http://www.ode.org/,
2015.

[12] Erwin Coumans and Yunfei Bai. Pybullet,
a python module for physics simulation for
games, robotics and machine learning. http:
//pybullet.org, 2016–2019.

[13] Jeongseok Lee, Michael X Grey, Sehoon
Ha, Tobias Kunz, Sumit Jain, Yuting Ye,
Siddhartha S Srinivasa, Mike Stilman, and
C Karen Liu. DART: Dynamic animation and
robotics toolkit. The Journal of Open Source
Software, 3(22):500, 2018.

[14] Michael A Sherman, Ajay Seth, and Scott L
Delp. Simbody: multibody dynamics for
biomedical research. Procedia IUTAM, 2:241–
261, 2011.

[15] Eric Rohmer, Surya PN Singh, and Marc
Freese. V-REP: A versatile and scalable robot
simulation framework. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots
and Systems, pages 1321–1326. IEEE, 2013.

[16] Emanuel Todorov, Tom Erez, and Yuval
Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

[17] CM-Labs. Vortex Studio. https://www.

cm-labs.com, 2020.

[18] Newton Dynamics. Newton Dynamics: a
cross-platform life-like physics simulation li-
brary. http://newtondynamics.com/forum/
newton.php, 2020.

[19] A Jain, J Balaram, J Cameron, J Guineau,
C Lim, M Pomerantz, and G Sohl. Re-
cent developments in the ROAMS planetary
rover simulation environment. In 2004 IEEE

aerospace conference proceedings (IEEE Cat.
No. 04TH8720), volume 2, pages 861–876.
IEEE, 2004.

[20] Quantum Signals. Anvel:AE - ANVEL UGV
simulator. https://quantumsignalai.com/.
Accessed: 2020-05-13.

[21] Abhi Jain. DARTS dynamics algorithms
for real-time simulation. https://dartslab.
jpl.nasa.gov/DARTS/index.php.

[22] Phillip Durst, Christopher Goodin, Chris
Cummins, Burhman Gates, Burney Mckin-
ley, Taylor George, Mitchell Rohde, Matthew
Toschlog, and Justin Crawford. A real-time,
interactive simulation environment for un-
manned ground vehicles: The autonomous
navigation virtual environment laboratory
(ANVEL). In 2012 Fifth International Con-
ference on Information and Computing Sci-
ence, pages 7–10. IEEE, 2012.

[23] C. Goodin, T. George, C. Cummins, P. Durst,
B. Gates, and G. McKinley. The virtual au-
tonomous navigation environment: High fi-
delity simulations of sensor, environment, and
terramechanics for robotics. In Earth and
Space, pages 1441–1447, 2012.

[24] D. W. Carruth. Simulation for training and
testing intelligent systems. In 2018 World
Symposium on Digital Intelligence for Sys-
tems and Machines (DISA), pages 101–106,
2018.

[25] Christopher Goodin, Matthew Doude,
Christopher Hudson, and Daniel Carruth.
Enabling off-road autonomous navigation-
simulation of lidar in dense vegetation.
Electronics, 7(9):154, 2018.

[26] Christopher Goodin, Daniel Carruth,
Matthew Doude, and Christopher Hudson.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 23 of 27

http://pybullet.org
http://pybullet.org
https://www.cm-labs.com
https://www.cm-labs.com
http://newtondynamics.com/forum/newton.php
http://newtondynamics.com/forum/newton.php
https://quantumsignalai.com/
https://dartslab.jpl.nasa.gov/DARTS/index.php
https://dartslab.jpl.nasa.gov/DARTS/index.php


Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Predicting the influence of rain on lidar in
adas. Electronics, 8(1):89, 2019.

[27] Epic Games. Unreal Engine. https://www.

unrealengine.com, 2020.

[28] Shital Shah, Debadeepta Dey, Chris Lovett,
and Ashish Kapoor. Airsim: High-fidelity vi-
sual and physical simulation for autonomous
vehicles. In Field and service robotics, pages
621–635. Springer, 2018.

[29] Unity3D. Main Website. https://unity3d.

com/, 2016. Accessed: 2016-06-09.

[30] Eric Espié, Christophe Guionneau, Bern-
hard Wymann, and Christos Dimitrakakis.
TORCS – The Open Racing Car Simula-
tor. https://sourceforge.net/projects/

torcs/, 2020.

[31] Yue Kang, Hang Yin, and Christian Berger.
Test your self-driving algorithm: An overview
of publicly available driving datasets and vir-
tual testing environments. IEEE Transactions
on Intelligent Vehicles, 4(2):171–185, 2019.

[32] Francisca Rosique, Pedro J Navarro, Carlos
Fernández, and Antonio Padilla. A system-
atic review of perception system and simula-
tors for autonomous vehicles research. Sen-
sors, 19(3):648, 2019.

[33] Project Chrono. Chrono: An Open Source
Framework for the Physics-Based Simu-
lation of Dynamic Systems. http://

projectchrono.org, 2020. Accessed: 2020-
03-03.

[34] A. Tasora, R. Serban, H. Mazhar, A. Pa-
zouki, D. Melanz, J. Fleischmann, M. Tay-
lor, H. Sugiyama, and D. Negrut. Chrono:
An open source multi-physics dynamics en-
gine. In T. Kozubek, editor, High Perfor-
mance Computing in Science and Engineering

– Lecture Notes in Computer Science, pages
19–49. Springer, 2016.

[35] Message Passage Interface Forum. MPI: A
message-passing interface standard. Technical
report, University of Tennessee, Knoxville,
TN, USA, 1994. http://www.ncstrl.org:

8900/ncstrl/servlet/search?formname=

detail&id=oai%3Ancstrlh%3Autk_cs%

3Ancstrl.utk_cs%2F%2FUT-CS-94-230.

[36] Morgan Quigley, Ken Conley, Brian Gerkey,
Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-
source Robot Operating System. In ICRA
workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[37] R. Serban, M. Taylor, D. Negrut, and
A. Tasora. Chrono::Vehicle Template-Based
Ground Vehicle Modeling and Simulation.
Intl. J. Veh. Performance, 5(1):18–39, 2019.

[38] A. Amini, I. Gilitschenski, J. Phillips, J. Mo-
seyko, R. Banerjee, S. Karaman, and D. Rus.
Learning robust control policies for end-to-
end autonomous driving from data-driven
simulation. IEEE Robotics and Automation
Letters, 5(2):1143–1150, 2020.

[39] Xinlei Pan, Yurong You, Ziyan Wang, and
Cewu Lu. Virtual to real reinforcement learn-
ing for autonomous driving. 01 2017.

[40] SAE. Taxonomy and Definitions for Terms
Related to On-Road Motor Vehicle Automated
Driving Systems, Jan 2014.

[41] Adit Joshi. Hardware-in-the-loop (hil) imple-
mentation and validation of sae level 2 auto-
mated vehicle with subsystem fault tolerant
fallback performance for takeover scenarios.
1:13–32, 07 2018.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 24 of 27

https://www.unrealengine.com
https://www.unrealengine.com
https://unity3d.com/
https://unity3d.com/
https://sourceforge.net/projects/torcs/
https://sourceforge.net/projects/torcs/
http://projectchrono.org
http://projectchrono.org
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230


Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

[42] A. Folkers, M. Rick, and C. Bskens. Control-
ling an autonomous vehicle with deep rein-
forcement learning. In 2019 IEEE Intelligent
Vehicles Symposium (IV), pages 2025–2031,
2019.

[43] Murat Dikmen and Catherine M. Burns. Au-
tonomous driving in the real world: Ex-
periences with tesla autopilot and summon.
In Proceedings of the 8th International Con-
ference on Automotive User Interfaces and
Interactive Vehicular Applications, Automo-
tiveUI 16, page 225228, New York, NY, USA,
2016. Association for Computing Machinery.

[44] X. Qian, I. Navarro, A. de La Fortelle, and
F. Moutarde. Motion planning for urban
autonomous driving using bzier curves and
mpc. In 2016 IEEE 19th International Con-
ference on Intelligent Transportation Systems
(ITSC), pages 826–833, 2016.

[45] Y. Kuwata, J. Teo, G. Fiore, S. Karaman,
E. Frazzoli, and J. P. How. Real-time motion
planning with applications to autonomous ur-
ban driving. IEEE Transactions on Control
Systems Technology, 17(5):1105–1118, 2009.

[46] X. Qian, F. Altch, P. Bender, C. Stiller, and
A. de La Fortelle. Optimal trajectory plan-
ning for autonomous driving integrating logi-
cal constraints: An miqp perspective. In 2016
IEEE 19th International Conference on Intel-
ligent Transportation Systems (ITSC), pages
205–210, 2016.

[47] Francesco Borrelli, Paolo Falcone, Tamás Ke-
viczky, Jahan Asgari, and Davor Hrovat.
Mpc-based approach to active steering for au-
tonomous vehicle systems. 2005.

[48] Alexander Liniger, Alexander Domahidi, and
Manfred Morari. Optimization-based au-
tonomous racing of 1: 43 scale rc cars. ArXiv,
abs/1711.07300, 2017.

[49] W. Huang, Kunfeng Wang, Yisheng Lv, and
FengHua Zhu. Autonomous vehicles testing
methods review. In 2016 IEEE 19th Interna-
tional Conference on Intelligent Transporta-
tion Systems (ITSC), pages 163–168, 2016.

[50] Sampo Kuutti, Richard Bowden, Y. Jin, Phil
Barber, and Saber Fallah. A survey of deep
learning applications to autonomous vehicle
control. ArXiv, abs/1912.10773, 2019.

[51] Jens Kober, Andrew Bagnell, and Jan Pe-
ters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics
Research, 32(11):1238–1274, 2013.

[52] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin A. Riedmiller.
Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602, 2013.

[53] Sergey Levine, Peter Pastor, Alex Krizhevsky,
and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with deep learn-
ing and large-scale data collection. CoRR,
abs/1603.02199, 2016.

[54] Marcin Andrychowicz, Bowen Baker, Ma-
ciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias
Plappert, Glenn Powell, Alex Ray, Jonas
Schneider, Szymon Sidor, Josh Tobin, Pe-
ter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning dexterous in-hand manip-
ulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

[55] John Schulman, Filip Wolski, Prafulla Dhari-
wal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[56] Richard S. Sutton and Andrew G. Barto. In-
troduction to Reinforcement Learning. MIT

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 25 of 27



Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Press, Cambridge, MA, USA, 1st edition,
1998.

[57] Sham Kakade and John Langford. Ap-
proximately optimal approximate reinforce-
ment learning. In IN PROC. 19TH INTER-
NATIONAL CONFERENCE ON MACHINE
LEARNING, pages 267–274, 2002.

[58] A. Tasora, D. Magnoni, D. Negrut, R. Ser-
ban, and P. Jayakumar. Deformable soil
with adaptive level of detail for tracked and
wheeled vehicles. Intl. J. Veh. Performance,
5(1):60–76, 2019.

[59] Project Chrono Development Team.
Chrono: An Open Source Frame-
work for the Physics-Based Simula-
tion of Dynamic Systems. https:

//github.com/projectchrono/chrono.
Accessed: 2019-12-07.

[60] ECMA. The JSON data interchange format.
Technical Report ECMA-404, ECMA Inter-
national, 2013.

[61] A. M. Recuero, R. Serban, B. Peterson,
H. Sugiyama, P. Jayakumar, and D. Negrut.
A high-fidelity approach for vehicle mobility
simulation: Nonlinear finite element tires op-
erating on granular material. Journal of Ter-
ramechanics, 72:39 – 54, 2017.

[62] R. Serban, D. Negrut, A. M. Recuero, and
P. Jayakumar. An integrated framework for
high-performance, high-fidelity simulation of
ground vehicle-tyre-terrain interaction. Intl.
J. Vehicle Performance, 5(3):233–259, 2019.

[63] Steven G. Parker, James Bigler, Andreas
Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan
McGuire, Keith Morley, Austin Robison, and
Martin Stich. OptiX: A general purpose ray

tracing engine. ACM Transactions on Graph-
ics, August 2010.

[64] Martin Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016.

[65] Adam Paszke, Sam Gross, Soumith Chintala,
Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017.

[66] Theano Development Team. Theano: A
Python framework for fast computation of
mathematical expressions. arXiv e-prints,
abs/1605.02688, 2016.

[67] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[68] David M Beazley. Automated scientific soft-
ware scripting with SWIG. Future Generation
Computer Systems, 19(5):599–609, 2003.

[69] Project Chrono Development Team. Py-
Chrono: A Python wrapper for the Chrono
multi-physics library. https://anaconda.

org/projectchrono/pychrono. Accessed:
2020-04-29.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 26 of 27

https://github.com/projectchrono/chrono
https://github.com/projectchrono/chrono
https://anaconda.org/projectchrono/pychrono
https://anaconda.org/projectchrono/pychrono


Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

[70] Greg Brockman, Vicki Cheung, Ludwig Pet-
tersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym.
CoRR, abs/1606.01540, 2016.

[71] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard Version
3.0, 09 2012. Chapter author for Collective
Communication, Process Topologies, and One
Sided Communications.

[72] Google. Flatbuffers white paper:
https://google.github.io/flatbuffers/

flatbuffers_white_paper.html.

[73] O. Balling, M. McCullough, H. Hodges,
R. Pulley, and P. Jayakumar. Tracked and
wheeled vehicle benchmark – a demonstration
of simulation maturity for next generation
NATO Reference Mobility Model. In Ground
Vehicle Systems Engineering and Technology
Symposium, Novi, MI, 2018.

[74] R. Serban, R. Gerike, A. Elmquist, and
D. Negrut. NG-NRMM Phase II Bench-
marking: Chrono Wheeled-Vehicle Platform
Simulation Results Summary,. Technical Re-
port TR-2017-05: http://sbel.wisc.edu/

documents/TR-2017-05.pdf, Simulation-
Based Engineering Laboratory, University of
Wisconsin-Madison, 2017.

[75] R. Serban, M. Taylor, D. Melanz, and
D. Negrut. NG-NRMM Phase I Bench-
marking: Chrono Tracked Vehicle Simula-
tion Results Summary. Technical Report
TR-2016-08: http://sbel.wisc.edu/

documents/TR-2016-08.pdf, Simulation-
Based Engineering Laboratory, University of
Wisconsin-Madison, 2016.

[76] Adam Danz. Draw randomly centered circles
of various sizes. https://www.mathworks.

com/matlabcentral/fileexchange/

70348-draw-randomly-centered-circles-of-various-sizes.
Accessed: 2020-06-17.

[77] Yarpiz. Path planning using PSO in
MATLAB. https://www.mathworks.

com/matlabcentral/fileexchange/

53146-path-planning-using-pso-in-matlab.
Accessed: 2020-06-17.

Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multi-Agent Scenarios,
Negrut, et al.
Page 27 of 27

https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://google.github.io/flatbuffers/flatbuffers_white_paper.html
http://sbel.wisc.edu/documents/TR-2017-05.pdf
http://sbel.wisc.edu/documents/TR-2017-05.pdf
http://sbel.wisc.edu/documents/TR-2016-08.pdf
http://sbel.wisc.edu/documents/TR-2016-08.pdf
https://www.mathworks.com/matlabcentral/fileexchange/70348-draw-randomly-centered-circles-of-various-sizes
https://www.mathworks.com/matlabcentral/fileexchange/70348-draw-randomly-centered-circles-of-various-sizes
https://www.mathworks.com/matlabcentral/fileexchange/70348-draw-randomly-centered-circles-of-various-sizes
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/53146-path-planning-using-pso-in-matlab

	INTRODUCTION
	DERIVING CONTROL POLICIES THROUGH SIMULATION
	SIMULATION INFRASTRUCTURE
	TECHNOLOGY DEMONSTRATION
	SynChrono scaling analysis
	Learning to drive in a convoy

	CONCLUSIONS. FUTURE WORK

